Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
ACS Appl Bio Mater ; 4(2): 1178-1190, 2021 02 15.
Article in English | MEDLINE | ID: covidwho-1091529

ABSTRACT

Ongoing pandemic coronavirus (COVID-19) has affected over 218 countries and infected 88,512,243 and 1,906,853 deaths reported by Jan. 8, 2021. At present, vaccines are being developed in Europe, Russia, USA, and China, although some of these are in phase III of trials, which are waiting to be available for the general public. The only option available now is by vigorous testing, isolation of the infected cases, and maintaining physical and social distances. Numerous methods are now available or being developed for testing the suspected cases, which may act as carriers of the virus. In this review, efforts have been made to discuss the conventional as well as fast, rapid, and efficient testing methods developed for the diagnosis of 2019-nCoV.Testing methods can be based on the sensing of targets, which include RNA, spike proteins and antibodies such as IgG and IgM. Apart from the development of RNA targeted PCR, antibody and VSV pseudovirus neutralization assay along with several other diagnostic techniques have been developed. Additionally, nanotechnology-based sensors are being developed for the diagnosis of the virus, and these are also discussed.


Subject(s)
Biosensing Techniques/methods , COVID-19/diagnosis , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/analysis , Animals , Antibodies, Immobilized/immunology , Antibodies, Neutralizing/analysis , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Graphite/chemistry , Humans , Metal Nanoparticles/chemistry , Nanotechnology/methods , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology
2.
Chem Eng J ; 414: 128759, 2021 Jun 15.
Article in English | MEDLINE | ID: covidwho-1056411

ABSTRACT

The recent outbreak of COVID-19 has created much inconvenience and fear that the virus can seriously affect humans, causing health hazards and death. This pandemic has created much worry and as per the report by World Health Organization (WHO), more than 43 million individuals in 215 countries and territories were affected. People around the world are still struggling to overcome the problems associated with this pandemic. Of all the available methods, reverse-transcriptase polymerase chain reaction (RT-PCR) has been widely practiced for the pandemic detection even though several diagnostic tools are available having varying accuracy and sensitivity. The method offers many advantages making it a life-saving tool, but the method has the limitation of transporting to the nearest pathology lab, thus limiting its application in resource limited settings. This has a risen a crucial need for point-of-care devices for on-site detection. In this venture, biosensors have been used, since they can be applied immediately at the point-of-care. This review will discuss about the available diagnostic methods and biosensors for COVID-19 detection.

3.
Chem Eng J ; 420: 127575, 2021 Sep 15.
Article in English | MEDLINE | ID: covidwho-898556

ABSTRACT

Virus-induced infection such as SARS-CoV-2 is a serious threat to human health and the economic setback of the world. Continued advances in the development of technologies are required before the viruses undergo mutation. The low concentration of viruses in environmental samples makes the detection extremely challenging; simple, accurate and rapid detection methods are in urgent need. Of all the analytical techniques, electrochemical methods have the established capabilities to address the issues. Particularly, the integration of nanotechnology would allow miniature devices to be made available at the point-of-care. This review outlines the capabilities of electrochemical methods in conjunction with nanotechnology for the detection of SARS-CoV-2. Future directions and challenges of the electrochemical biosensors for pathogen detection are covered including wearable and conformal biosensors, detection of plant pathogens, multiplexed detection, and reusable biosensors for on-site monitoring, thereby providing low-cost and disposable biosensors.

SELECTION OF CITATIONS
SEARCH DETAIL